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Abstract 

The response of particles trapped in 1D resonance islands to betatron tune 

modulation resembles, yet is not equivalent to, that of a parametric resonant 

system. Experimental data obtained at Indiana University Cyclotron Facility 

for the 4th order resonance islands has confirmed this characteristic feature. 

The beam, driven by betatron tune modulation, was observed for the first time 

to travel from near the center of resonance islands toward the separatrix. The 
experimental data are characterized by the onset of large response at a critical 

modulation amplitude and frequency, which are compared with theoretical 

models. Possible future experiments are suggested. 
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I. INTRODUCTION 

Enhanced particle diffusion in a dynamical system due to a time dependent driving force 
has long been recognized [l]. Th’ p bl IS ro em is particularly important to high energy colliders 
and high brightness storage rings, where the time dependent components usually play a 
key role in determining the dynamical aperture and particle stability. The time dependent 
driving components in high energy storage rings can be divided into dipole field modulation 
and quadrupole field modulation. The dipole field modulation can arise from ground vibra- 
tion or current ripple in dipoles. Similarly, the quadrupole field modulation can come from 
current ripple in quadrupoles, synchrotron motion with nonzero chromaticities and/or the 
feed-down of sextupoles resulting from ground vibrations etc. In the past we have studied 
the effects of longitudinal beam dynamics due to dipole field modulation and/or rf acceler- 
ation field modulation [2-51. This paper studies specifically transverse beam dynamics due 
to the betatron tune modulation, which was generated by modulating the current supplied 
to a quadrupole. We study, in particular, effects of tune modulation on particles trapped 
in resonance islands. Such a tune modulation would generate regions of stochastic layers in 
the phase space of otherwise invariant tori. These stochastic layers may cause an enhanced 
diffusion rate. 

Many theoretical and numerical particle tracking studies [6,7] have investigated the effects 
of betatron tune modulation. It was recognized that the effect of tune modulation on 
particles trapped in resonance islands is equivalent to a system of a physical pendulum with 
phase modulation [I]. Reference [6] obtained the condition of chaos from the particular 
solution of the linearized pendulum equation. However, the linear superposition is known 
to break down near the region of the island resonance frequency [4], where the nonlinearity 
plays an important role in the dynamics. Alternatively, reference [7] defined the width of 
the stochastic layer as the relative deviation of the Hamiltonian value from separatrix orbit. 
The change of relative energy deviation, calculated along the separatrix orbit for half period 
of the time dependent perturbation, is a function of the phase angle of the particle relative 
to the time dependent driving potential. On the other hand, the phase angle depends, in 
turn, on the relative energy change. The stability of the coupled equations are then used to 
obtain the critical width of stochastic layer. In particular, the width of the stochastic layer 
is found to be maximum when the modulation frequency equals to about 1.35 times the 
island frequency at a constant modulation amplitude. Numerical simulations in reference 
[7] seems to confirm that tori of the resonance Hamiltonian are strongly affected around that 
modulation frequency at a constant modulation amplitude. Experimental confirmation of 
these different approaches is therefore needed. 

In the past, there were several experiments on effects of betatron tune modulation [8,9]. 
However, these tune modulation experiments were not able to track single particle motion in 
the Hamiltonian system. In the CERN experiments [8], lifetime of the beam was measured 
as a function of the tune modulation amplitude at a combination of modulation frequencies 
of 9 Hz, 40 Hz and 180 Hz. These modulation frequencies were chosen to sample regions 
of interest. On the other hand, the range of modulation frequencies was chosen near the 
resonance island frequency for the Fermilab experiment [9]. However, because of the small 
island size, only the rate of decoherence as a function of the modulation frequency for the 
beam captured in the island was measured. Tracking single particle motion inside an island 
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could not be performed. To understand single particle dynamics, it is important to be able 
to follow the trajectory of a single particle in the dynamical system. 

To measure a single particle motion, small beam emittance is needed. In this respect, the 
Indiana University Cyclotron Facility (IUCF) Cooler Ring provides an ideal environment 
for nonlinear beam dynamics experiments. The 95% emittance, or phase space area, of 
the proton beam is electron-cooled to about 0.3 7r mm-mrad in less than 3 s. The resulting 
relative momentum spread full width at half maximum, FWHM, of the beam is about 0.0001. 
Such a high quality beam bunch can closely simulate single particle motion. 

This paper reports results of experiments performed at the IUCF Cooler Ring on the 
effect of tune modulation for particles trapped in resonance islands. We organize this paper 
as follows. Sec. II discusses the Hamilton’s equation of motion in the presence of tune 
modulation for particles trapped in resonance islands of 1 degree of freedom (1D). Set III 
discusses the experimental procedure and presents experimental data. Conclusions are given 
in Sec. IV. 

II. THE EQUATION OF MOTION IN THE PRESENCE OF TUNE 
MODULATION 

The Hamiltonian in the action-angle variables in a region dominated by a single resonance 
(mu = l) is given by 

H = vJ + ;aJ2 + ,Jf cos(md - EB + x) + . . . , 0) 

where J and 4 are the conjugate action-angle variables for the betatron oscillations, 8 is the 
orbital angle serving for the time coordinate, u is the betatron tune (either horizontal or 
vertical), Q: is the nonlinear betatron detuning parameter arising from higher order multi- 
poles, g and x are the resonance strength and phase at the 1D nonlinear resonance mu = e 
[lo] with ’ t g 1 m e ra m, ! and n 2 m. For particles with small actions, the term with n = m 
dominates the dynamics. Hereafter, we consider the Hamiltonian with n = m only. 

Using the generating function, 

r2 = (4 - fe + x,1, (2) 

we transform the coordinate system into the resonance rotating frame where the new action- 
angle coordinates are given by I = J and $J = 4 - $0 $ 2. The new Hamiltonian becomes, 

S = SI $ id2 + gIF cosm$. (3) 

Here 6 = v- f is the proximity of the betatron tune to the resonance line. The transformed 
Hamiltonian is time independent and is a constant of motion. A torus corresponds to the 
Hamiltonian flow at a constant “energy”, i.e. fi(I,$) = E. 

This simple single resonance dominated Hamiltonian has been verified experimentally 
[ll,l2] for the third and the fourth order resonances by comparing the measured Poincard 
maps with tori of the Hamiltonian. Hamilton’s equations of motion are given by 
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i = mglf sin m+, (4) 

4 = 6+ CXI + FgIy-’ cosm$, (5) 

where the dot represents the derivative taken with respect to the orbital angle 0. The fixed 
points (If,$f) of the Hamiltonian are given by 

sin m$r = 0, and 6 + CXI~ i YcJ~~‘-~ = 0. (6) 

Thus the fixed points are local extrema of the Hamiltonian along a line of constant $, i.e. 

;E =O. 
sin m6=0 

The unstable fixed point (UFP) corresponds to a saddle point on the energy surface, while 
the stable fixed point (SFP) corresponds to a local extremum. 

In particle accelerators, the betatron tunes may be time dependent due to quadrupole 
current supply ripple. With a small tune modulation, the parameters Q and g do not vary 
appreciably. The equation for the phase oscillations becomes, 

&,+Gsin$,=mi, (7) 

where &,, = rn$ signifies the island phase angle and G is the spring constant for the phase 
oscillation given by 

G = $EgJYs2 + T(m - 4)crgIZ. 

Thus the phase oscillations generally resemble the physical pendulum equation. However, 
when m # 4, the spring constant, G, depends on the action, which is time dependent. In 
fact G is not necessarily positive definite in the entire region of a torus. In the linearized 
approximation, i.e. sin +n x +m, the island tune is given by “visland” = Jzj. We sometime 
loosely use fi as the “island tune”. The actual island tune ijiJland, of a given torus can be 
obtained from solving Hamilton’s equations of motion, i.e. 

Vishnd = 2nm 
I 

(s2p _ [E -“s’I _ @2]2)‘/2 1 
-1 

* (9) 

Since the spring constant is not necessarily a constant, the phase oscillation may not be 
uniform within a torus of the Hamiltonian flow. The phase oscillation of Eq. (7) with the 
addition of tune modulation resembles, but is not equivalent to, the pendulum equation with 
phase modulation. The difference is that the spring constant depends also on the amplitude. 
Thus the effect of tune modulation on the island motion will depend critically on resonance 
parameters. This effect was not considered in earlier theoretical analyses [6,7]. Nevertheless, 
the island tune for small amplitude oscillations of Eq. (9) becomes, 

Visland = 5 [2mE,~pgIS$,-2 + (m - 4)r~gI~$~/~. (10) 
An accidental cancellation occurs at the 4th order resonance with the result that the 

island tune is given by ~;,l~~d = ydw, which is constant for a given torus. Since the 
energy, E, is an extremum at the SFP, the island tune will be largest at the SFP. In the 
following, we will discuss two low order resonances. 
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A. The third order resonance 

At the third order resonance with m = 3, fixed points of the Hamiltonian are given by, 

$1” = 
+9&J- 

2cr (11) 

It is clear that the third order resonance fixed points exist when the condition, 

(12) 

is satisfied. We obtain therefore, 

p 
sfp = 

ZigI t Jm, 11/2 i;isi - JfSF-=4 
214 

ufp = 44 * 03) 

Note here that if a6 > 0, then the SFP and UFP are located on the same betatron phase 
angle, i.e. &fp = &r,. On the other hand, if CUS < 0, then the betatron phase angles of the 
SFP and the UFP differ by 60”, i.e. &rp = $,,rp f 5. The energy at the fixed point is given 
by Ef = s&If - id:, where If is either ISa or Iufp, and the corresponding small amplitude 

island tune becomes, $),land = fs bf-( 15fp S - cJsfp). An illustrative example is given in the 
appendix. 

B, The fourth order resonance 

The equation for phase oscillation at the fourth order resonance with m = 4 has a 
particularly simple feature. Assuming CY > 0, the fixed points are given by 

Lfp = - 
6 

Lfp = - 
b 

CY - 2/d OJ + 214 ’ 
and the corresponding “energies” at these fixed points are 

s2 
Esfp = -2(cy - 2191)’ 

s2 
Eufp = -2(” t 2lgl)’ (15) 

Note here that the fourth order resonance island exists only when both the conditions crS 5 0 
and CY > 2191 are satisfied. When the resonance strength /gl is larger than i/al, the SFP of 
the 4th order resonance island goes to infinity, while the UFPs are still given by Eq. (14). 
Similar results can be arrived at for cx < 0. 

The small amplitude island tune becomes, 

VisZand = 4161 J I91 

Q - Ql* 

Since the equation of motion for the betatron phase is given by 

(16) 

. . 
$4 t 32Egsin$,4 = 0, 
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the island tune for a torus around the resonance island will depend on two factors: (1) 
the energy factor, E, which is a constant for a given torus, and (2) the amplitude of the 
synchrotron-like motion. In other words, the phase oscillation of the 4th order resonance 
is “equivalent” to that of synchrotron motion. When the betatron tune is modulated, the 
equation of motion for particles trapped in the island becomes a parametric resonance equa- 
tion with phase modulation [Eq. (7)]. Th e response of a system having such an equation of 
motion exhibits bifurcation when the modulation frequency lies below the critical frequency. 
Such a system has recently been studied extensively for synchrotron motion [2-41. 

The separatrix (the torus passing through the UFP) se p arates the island motion from 
tori inside and outside. The minimum and maximum actions of the separatrix are given by 

Isxl = &fp( 1 + 2 

d 

g ~;lgl )7 Isx2 = Lfp(l - 2 

J 

cr j& ). (17) 

It is interesting to note that the average of the maximum and minimum actions of the 
separatrix equals to the action of the SFP. The island width is given by 

AI = IsT,,* - Isx2 = 4Lfp 

J 

ISI 
a + 2191* (18) 

III. EXPERIMENTAL PROCEDURE AND RESULTS 

The IUCF Cooler Ring is hexagonal with a circumference of 86.8 m. The experiment 
started with a 90 MeV Ht beam strip-injected, stored, and cooled in a 10 s cycle resulting 
in a 45 MeV proton beam. The stored beam consisted of a single bunch, typically with 
3 x 10’ protons and a bunch length of about 5.4 m (or 60 ns) FWHM for this experiment. 
The revolution period in the accelerator was 969 ns with bunching produced by operating 
an rf cavity with frequency f. = 1.03168 MHz at harmonic number, h = 1. 

Before making a measurement, the injected beam was electron-cooled for about 3 s. The 
stability of the horizontal closed orbit was measured to be better than 0.05 mm FWHM. The 
beam was then kicked with various angular deflections BK, with a pulsed deflecting magnet 
having a time width of 600 11s FWHM, and rise and fall times of 100 ns. The kick occurred 
in conjunction with a triple coincidence among a signal from the data acquisition system, 
the rf system which was providing the beam bunching, and a 7 s delay from the beginning of 
the injection cycle. Details of our experimental setup have been previously published [ll]. 

Once perturbed by the kicker, the beam executed coherent betatron motion and sampled 
existing field nonlinearities in the synchrotron. The Poincari map in (Z-P%) phase space 
was obtained by measuring the horizontal position deviations from the closed orbit at two 
different positions [ll]. The transverse electron cooling time was typically about 1 s or lo6 

revolutions, which had a very small effect within the time of a measurement (4096 revolutions 
[13]). Nevertheless it was turned off 20 ms before the beam was kicked in order to avoid 
damping of the betatron oscillations. 

In our earlier experiments [ll], we found that the SFPs for the third order resonance 
were located outside the dynamical aperture of the Cooler Ring. On the other hand, the 
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properties of the 4th order resonance island were successfully explored [12], we chose to 
study the effect of tune modulation for the beam trapped in the 4th order resonance island. 
The horizontal betatron tune was chosen close to the fourth order resonance condition, 

uz M 3.75. The linear coupling between the horizontal and vertical betatron motion was 
corrected by a pair of skew quadrupoles [11,12,14]. A horizontal kicker was pulsed to kick 
the bunch into the center of the resonance island. Almost 100% of the particles in the 
bunch were trapped inside the island. After the kick, the power supply for a quadrupole was 
modulated sinusoidally [15]. The droop of the modulation quadrupole gradient as a function 
of modulation frequency due to the skin effect of the vacuum chamber was measured and 
compensated for up to about 3 kHz [15]. With tune modulation, the betatron tune was 
given by, 

v = v. + qsinv,8, 09) 

where the modulation amplitude q, varied from 0.00025 to 0.001. 

A. PoincarC maps and the Resonance Hamiltonian 

Figure la in the left column shows (1) the Poincari map in (2,~~) phase space for 3584 

orbital revolutions at the top, (2) the betatron phase $4 of one of the islands as a function 
of the island turns (the number of orbital revolutions divided by the number of islands) 
in the middle, and (3) the fast I? ‘ourier transform (FFT) of the betatron oscillations at the 
bottom, for the beam bunch trapped in the 4th order resonance islands zoithozlt applying 
betatron tune modulation. The data points located at the origin of the Poincare map in 
Fig. la correspond to beam bunch positions prior to the coherent betatron kick. From the 
bottom frame of Fig. la, the island tune is observed as a sideband of the betatron tune to 
be uis[and = 0.00263 f 0.0003 or the island frequency, fid[and = 2720 HZ. This means that 
our data acquisition system [13] was able to sample about 9 island oscillations clearly visible 
from the middle part of Fig. la. Figure lb shows similar data for the bunch motion with 
forced tune modulation at the modulation frequency, fm = 1545 Hz and q = 0.00086, where 
2000 orbital revolutions are plotted in the Poincari map. Figure lc shows data at fm = 2570 
Hz and q = 0.00086, where 1000 orbital revolutions are plotted in the PoincarC map. 

At a relatively large tune modulation amplitude of q = 0.00086, Figs. lb and c show that 
the particle motion in the island was strongly perturbed. When the modulation frequency 
was 1545 Hz, the bunch was driven out of the island in about 700 island turns, or 2800 
orbital revolutions. The phase oscillations of $4, shown in the middle of Fig. lb, exhibit an 
interesting beating oscillation similar to that observed for synchrotron motion with rf phase 
modulation [3,4]. At tl le modulation frequency of 2570 Hz, the bunch was driven out of the 
island in about 160 island turns or 640 orbital revolutions and traveled along the separatrix 
of these islands. 

Transforming the normalized phase space coordinates into the action-angle variables [ll] 
for the modulation frequency at 2570 Hz, Fig. 2 shows that the beam bunch moves from 
a nearly center position in resonance islands to a trajectory along the separatrix. The 
maximum and minimum actions of the separatrix and the actions of the SFP and UFP are 
thus determined to be, 
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ISxl = 3.7 It 0.2 rrmm - mrad, ISxz = 1.1 f 0.2 7rrnrn - mrad, 

I+ = 2.4 f 0.2 Trnm - mrad, I,+ = 1.5 f 0.2 rrnm - mrad. 

Using Eqs. (16) and (17), parameters for the resonance Hamiltonian can be obtained as, 

CY = 1.0 x 10e3 (rrnrn - mrad)-‘, 

g = -9.8 x 10T5 (nmm - mrad)-‘, x = 0.75 rad., (20) 
6 = -1.9 x 10-3. 

These parameters are found to be consistent with the IufP of Eq. (14). An overall sign for the 

Hamiltonian is not determined from this method unless the nonlinear detuning parameter, 

(Y, is measured. The actual overall sign in the Hamiltonian is however not important with 
regards to the dynamics in the presence of tune modulation. 

B. Beam response due to tune modulation 

When the betatron tune is externally modulated, the equation of motion for the island 
phase is given by 

7i;4 + u~d~nd (21) 

where 4’4 = 44, and a is the effective phase modulation amplitude [4] given by, 

49 a=-. 
&II 

(22) 

Since the greatest effect on particle motion would occur at a resonance condition, when the 

modulation tune was near the island tune, the effective phase modulation amplitude a would 
be greatly enhanced at a smaller island tune. The numerical simulations with q = 0.002 

reported in reference [7] and the experiment with q = 2.04 x low4 reported in reference [9] 
corresponded to an effective phase modulation amplitude of a z 0.16. The effective phase 
modulation amplitude in our system is enhanced by a factor of about 20 in comparison with 
that of reference (71, where the island tune used in numerical simulations is about 0.05. This 
means that our system is much more sensitive to the tune modulation than that of reference 

Using parameters obtained from the previous section for the Hamiltonian, we found 
that Visland = 4m varied between 0.0026 and 0.0021 depending on the energies of the 
corresponding tori in the resonance island width. For a given torus at the maximum phase 1 
amplitude $4, the actual island tune fiisland, is given by 

ruisland 
~island = 

2K(sin2 4) ’ 

where K is the complete elliptical integral of the first kind. Since the V;,[aTld does not vary 
appreciably within the island width, Eq. (21) is equivalent to the parametric resonance 
equation with phase modulation [3,4]. 
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When the modulation frequency is far away from the resonant frequency, the solution of 
the forced pendulum equation of Eq. (21) ’ g IS iven by a linear superposition of the particular 
and the general solutions resulting in a beat tune of IV, - fii,landI. The phase oscillation 
of $I~, shown in the middle of Fig. lb, exhibited this beating feature for about 900 orbital 
revolutions, or 225 island turns. The reason that the beating of the phase oscillation in the 
transverse resonance motion with tune modulation does not persist for a long time is due 
to a very large equivalent phase modulation amplitude. The resulting response amplitude 
becomes too large to be confined inside the resonance island. 

At the modulation amplitude of q = 0.00086, the corresponding phase modulation am- 
plitude is a z 1.3. Numerical simulations of single particle synchrotron motion with rf phase 
modulation indicated that particles could be driven out of the rf bucket at a modulation 
amplitude of a M 0.1 if the separatrix of the modulation Hamiltonian passed through the 
initial phase space coordinates of the trapped particles [4]. Tl lis means that particles can be 
driven out of the resonance island if the modulation frequency is exactly at the bifurcation 
frequency with a modulation amplitude greater than 0.00006. A word of caution is that 
only coherent motion of the beam can be measured, i.e. the measured data correspond to 
the centroid of the beam charge distribution, therefore the measured tolerable modulation 
amplitude may be different from that predicted by the single particle dynamics. 

To characterize the response of a strong phase modulation, we define the critical number 
of revolutions NC, as the number of revolutions required for the bunch to escape the island. 
Figure 3 shows & vs the modulation frequency fm = vmfo with q = 0.00086. The error bar 
reflects both the uncertainty in determining the number of revolutions that the particle stays 
inside the island and the range of variations in NC for different experimental runs. A larger 
error bar could indicate that the result depended very much on the initial beam conditions. 
At low modulation frequencies, an apparent increase in response seems to occur for fm > 
fC = 1200 If 200 Hz. At the high modulation frequency end, the response persists to be large 
up to our system limitation of 3 kHz. Thus the response function has the characteristic of 
the parametric resonance system [3,4]. Unfortunately, our modulation system was limited 
to 3 KHz due to the vacuum chamber thickness and the limitation of our modulation power 

supply. 
Figure 4 shows & as a function of the modulation amplitude q at the modulation fre- 

quency of fm = 1545 Hz. Here a strong response seems to occur at q 2 qc = 0.0006f0.0001, 
where qc denotes the critical modulation amplitude. Since the modulation frequency of 1545 
Hz is much smaller than the island frequencies of 2160 Hz to 2720 Hz, depending on the 
energy of the torus, the response can be expressed as a linear superposition of the particular 
and the general solutions of the linearized Eq. (21). A ssuming that the initial phase space 
coordinates of the trapped bunch were located at the center of the island, the maximum 
response becomes 

4 4% 
2 x 44nq 

kLd(d4) - 4 ’ 
(23) 

where the factor of 2 arose from the linear superposition of two solutions. At the modulation * 
amplitude of q = 0.0006, the maxirnum phase amplitude $4 can become large and therefore 
particles can be driven out of resonance islands. 
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C. Comparison with theoretical models 

Following reference [ 61, a dynamical system becomes chaos when both of the following 

conditions, 

rl> 11 - PI 
t ’ 

64 
77.5-y’ 

Fc 

(24 

(25) 

are satisfied, where the dimensionless parameters, t and 7, are given by 

The parameter q is equivalent to the phase modulation amplitude a of Eq. (22) at vrn z 
vis[and. The condition for cha.os given by Eq. (24) is identical to Eq. (23) with an amplitude 
independent island tune and a maximum phase amplitude of + = 2 rad. The condition 
of Eq. (25) corresponds to the overlapping of modulation sidebands. On the other hand, 
reference [7] obt ained the threshold for the chaotic transition by imposing the stability 
condition to the phase spa.ce maps along the separatrix trajectory. The critical modulation 
amplitude is given by 

27.41 d 
TI---- 

74” 
cash -. 

2 (26) 

Here zv,l signifies the critical width of the stochastic layer [7], which is given by the relative 
energy deviation from the separatrix torus. 

Figure 5 shows curves for the critical 71 as a function of <. The curve for Eq. (24) is marked 
with (a), the curve for Eq. (26) is marked with (bl), (b3), and (b5) for the stochastic layer 
width parameter w,l = 0.1, 0.3 and 0.5 respectively, and the curve for Eq. (25) is marked 
with (c). The experimental da.ta points shown with square symbols correspond to the critical 
frequency and strength obtained from Figs. 3 and 4, i.e. q = O.O0086,f, = 1200 Hz and 

q = 0.0006, fm = 1545 Hz. The data, shown as circles in Fig. 5, were taken from reference 
[9], where the range of the quoted island tune, from 0.0053 to 0.0085, was assumed. The 

uncertainty (error bar) of these data points are relatively large due to the uncertainty in the 
island tune, which has not been measured directly in experiments of references [9]. 

Note here that t, 77 parameters of this experiment (square symbols) are lying on a curve 

with a stochastic width of w,l = 0.3. It is possible although fortuitous to relate the critical 
stochastic width of W,I = 0.3 to the energy difference between the tori of the SFP and the 
UFP, i.e. 

Esfp - Eur, 4191 
E SfP = lcyl + 2191 = o*3* (27) 

For a parametric resonant system with phase modulation [Eq. (21)], the amplitude re- 
sponse increases dramatically when the bifurcation frequency of the system is encountered 
[3,4]. The bifurcation frequency corresponds to the onset of generating a pair of SFP and 
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UFP beside the original SFP within the original island of the nonlinear resonance. For each 

additional SFP, there is an associated secondary island. If the modulation amplitude, q, is 
increased at a constant modulation frequency below the bifurcation frequency, the size of the 
outer secondary island increases accordingly. Therefore particles in the nonlinear resonance 
island will be driven out of the inner secondary island and will travel along the separatrix of 
the nonlinear resonance. Similarly, when the modulation frequency increases toward the bi- 
furcation frequency, at a constant modulation amplitude 7, the secondary separatrix created 
by the tune modulation will cut through the center of the unperturbed nonlinear resonance 
island. Thus it is useful to characterize the transition to a large response function by the 
onset of the bifurcation transition in the parametric resonant system. The bifurcation tune 

parameter & is related to the modulation amplitude parameter 71 by 

6 = 1 - &(4q)‘/‘, 

which is shown as the curve marked (d) in Fig. 5. Note that Eq. (28) is valid only near and 
below the island frequency. Eq. (28) seems to imply that the tolerable modulation amplitude 
is zero at t = 1. This is however not the case due to the nonlinearity of the system in Eq. (21). 

At the bifurcation frequency, the stable fixed point amplitude is $J,++ = 2(4r])li3 and the 
amplitude of the SFP at [ = 1 becomes, (8~) ‘i3 Therefore there is a minimum modulation . 

strength, qC, given by 

71, L c, 
8 ( 

c 2 1)) 

so that the resulting response amplitude is large, i.e. 44 z c1i3. In the region t > 1, i.e. 
the modulation frequency is higher than the island frequency, there is only one SFP within 
each nonlinear resonance island. The critical tune modulation amplitude may be given by 
either Eq. (23) or Eq. (26). IVI ore measurements of the critical modulation amplitude as a 
function of modulation frequency are necessary to compare to these theoretical models. 

IV. CONCLUSION 

Effects of the tune modulation on the motion of particles trapped in resonance islands 
were studied experimentally. The beam was observed for the first time travelling from near 

the center of resonance islands toward the separatrix of the Hamiltonian due to the betatron 
tune modulation. We characterized the response of the trapped particle by $, where NC 
is the number of orbital revolutions that the beam remains trapped inside a resonance 
island. The dynamics is similar to that of the synchrotron motion with an equivalent phase 
modulation. The response, when plotted as a function of modulation frequencies, displayed 
characteristics of a parametric resonant system [3,4]. Tl le measured response, when plotted 
as a function of the modulation amplitude, exhibited the existence of a critical modulation 
amplitude, where particles can easily be driven out of the resonance islands. These critical 
modulation amplitudes and frequencies are compared with chaotic transition conditions of 
reference [6,7] and the bifurcation condition of reference [4]. Further experiments with a 
detailed exploration of phase space maps as a function of modulation frequency at a smaller 
modulation amplitude, e.g. an equivalent phase modulation amplitude of a < 0.5, and at 
higher modulation frequencies would be valuable. 
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It is generally known that the stochasticity begins at a region of phase space around 

unstable fixed points. However, the particle beam can not easily be tracked experimentally 
along the separatrix due to the fact that particles in the beam bunch can split into small 

groups leading to a strong decoherence for the centroid of the charge distribution. However, 
careful experimental observations of Poincare maps inside the island may lead to further 
insight for theoretical studies. Since the equation of the phase oscillation, in the presence of 
betatron tune modulation, differs in details from that of the driven pendulum equation, more 
rigorous theoretical treatment is needed. Numerical simulations in many realistic dynamical 
systems are also needed. These studies can help to gain theoretical insight for rigorous 

treatment of dynamical systems. 
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APPENDIX: AN EXAMPLE FOR THE THIRD ORDER RESONANCE 

We consider an illustrative example for the third order resonance with parameters, S = 
1/2ooo,cY = -l/1000 [ 7r mm-mracl]-’ and g = l/3000 [n-mm-mrad]-1/2. The corresponding - 
SFP and UFP are located at I,, = 1 [-ir-mm-rnrad], Burp = 0.25 [n-mm-mrad]. Three tori and 
their corresponding “island tune” uiJland = JZ, for the pl lase oscillations of 4s are shown 

respectively in the right and the left frames of Fig. 6. Note here that the spring constant 
for the phase oscillation varies by about a factor of four for a torus near the separatrix. The 
island tune at the SFP is 0.0015. 
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FIGURES 

FIG. 1. The fourth order resonance island motion without tune modulation is shown on the 

left column (a), where the top graph shows the PoincarC map for a beam bunch trapped in the 4th 

order 1D resonance island, the middle graph shows the betatron phase oscillations of $4 = 4$ of an 

island and the bottom graph shows the FFT of the position coordinate. The effect of island motion 

due to tune modulation at the modulation frequencies of 1545 Hz and 2570 Hz at the modulation 
amplitude of q = 0.00086 are shown in (b) and (c) columns respectively. 

FIG. 2. The Poincari map in action-angle variables for the bunch trapped in 4th order reso- 
nance islands under the external betatron tune modulation at the modulation frequency of 2570 

Hz for the same data as that shown in Fig. lc. Note here that the particle is driven out of the 
island onto the separatrix of the resonance Hamiltonian in about 640 orbital revolutions. 

FIG. 3. The response &, where N, is the number of orbital revolution that the particle stays 

inside resonance islands, is plotted as a function of the modulation frequency at the modulation 

amplitude of q = 0.00086. Note here that the error bar is much larger in the transition frequency 

region, where NC varied wildly in different runs. This reflected that NC depended sensitively on 
the initial condition. The error bars are too large to identify subharmonic excitations. 

FIG. 4. The response & is plotted as a function of the modulation strength q for the modulation 

frequency of 1545 Hz. It appears that there is a sudden onset of strong response to the island motion 
at the modulation amplitude of qc z 0.0006. 

FIG. 5. The chaotic transition conditions are shown as the curve (a) for Eq. (24), as curves 

(bl), (b3), and (b5) f or w,l = 0.1, 0.3, and 0.5 respectively for Eq. (26), and as the curve (c) for 

Eq. (25). Th e h orizont,al axis in this figure is [ = yjl”‘nd and the vertical axis is 71 = &. The 

square symbols correspond to the data of transition point of Figs. 3 and 4, where the island tune 
is taken as Vialand = 0.00263. The data shown as circles were taken from reference [9] with quoted 
island tune range from 0.0053 to 0.0085. 

FIG. 6. The PoincarC maps of three tori in third order resonance islands are plotted in the 

right figure and the corresponding square root of spring constant “V;&nd”, for the betatron phase 
oscillation as a function of the action of each torus are plotted in the left figure. The phase space 

coordinates are X = v’? cos $ and P = -&sin +. The parameters of the resonance Hamiltonian 

are 6 = l/2000, a: = -l/1000 [ x mm-mrad]-‘, and y = l/3000 [7r-mm-mrad]-1/2. - 
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